We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article reports on designing and implementing a multiclass sentiment classification approach to handle the imbalanced class distribution of Arabic documents. The proposed approach, sentiment classification of Arabic documents (SCArD), combines the advantages of a clustering-based undersampling (CBUS) method and an ensemble learning model to aid machine learning (ML) classifiers in building accurate models against highly imbalanced datasets. The CBUS method applies two standard clustering algorithms: K-means and expectation–maximization, to balance the ratio between the major and the minor classes by decreasing the number of the major class instances and maintaining the number of the minor class instances at the cluster level. The merits of the proposed approach are that it does not remove the majority class instances from the dataset nor injects the dataset with artificial minority class instances. The resulting balanced datasets are used to train two ML classifiers, random forest and updateable Naïve Bayes, to develop prediction data models. The best prediction data models are selected based on F1-score rates. We applied two techniques to test SCArD and generate new predictions from the imbalanced test dataset. The first technique uses the best prediction data models. The second technique uses the majority voting ensemble learning model, which combines the best prediction data models to generate the final predictions. The experimental results showed that SCArD is promising and outperformed the other comparative classification models based on the F1-score rates.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.