We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a time reversible, continuous time Markov chain on a finite state space. The state space is partitioned into two sets, termed open and closed, and it is only possible to observe whether the process is in an open or a closed state. Further, short sojourns in either the open or closed states fail to be detected. We consider the situation when the length of minimal detectable sojourns follows a negative exponential distribution with mean μ–1. We show that the probability density function of observed open sojourns takes the form , where n is the size of the state space. We present a thorough asymptotic analysis of fO(t) as μ tends to infinity. We discuss the relevance of our results to the modelling of single channel records. We illustrate the theory with a numerical example.
We consider a finite-state-space, continuous-time Markov chain which is time reversible. The state space is partitioned into two sets, termed ‘open' and ‘closed', and it is only possible to observe which set the process is in. Further, short sojourns in either the open or closed sets of states will fail to be detected. We show that the dynamic stochastic properties of the observed process are completely described by an embedded Markov renewal process. The parameters of this Markov renewal process are obtained, allowing us to derive expressions for the moments and autocorrelation functions of successive sojourns in both the open and closed states. We illustrate the theory with a numerical study.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.