We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A symbolic calculus for reasoning about process plans is proposed in this paper. The main focus of attention is the selection and sequencing of material removal operations for components in accordance with the design geometry. This is a central issue in automated process planning. The proposed symbolic calculus defines a computational formalism for symbolic manipulation of feature volumes, so that reasoning about volumetric removals can be treated in a logical manner by using well-defined procedures of algorithmic synthesis. This potentially encourages a more generic approach to the automation of outline and detailed process planning. The underlying philosophy is that a properly interpreted object topology upon the feature model allows the logical synthesis of volumetric removal sequences. The number of sequences is constrained by algorithms within the planning system that consider part geometry as expressed by features. This reduces the problem space associated with plan synthesis. Some of the geometrically viable sequences have the potential for further development to form viable machining removal sequences, or outline process plans.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.