Severe malnutrition is widely distributed throughout the world, showing a high prevalence in developing countries. Experimental animal models have been useful to study the effects of malnutrition at different levels and ages. Apoptosis is a well recognised process of cell death occurring under several physiological and pathological conditions. It represents the principal mechanism involved in cell selection in the thymus. Thymocyte apoptosis induction by dexamethasone is one of the best characterised experimental models of programmed cell death. The aim of the present study was to determine whether severe malnutrition increased spontaneous and/or dexamethasone-induced apoptosis in vivo in thymocytes of experimentally malnourished rats during lactation. Thymocytes were obtained from malnourished rats at weaning (21d of age). Apoptosis frequency was estimated by the terminal transferase-mediated dUTP nick end labelling assay. Spontaneous apoptosis was 1·9 (SD 1·0) % IN WELL NOURISHED RATS IN CONTRAST TO 13·3 (sd 3·8) % in malnourished animals; this is seven times greater (P<0·001). Interestingly, the frequency of dexamethasone-induced apoptosis was similar in both groups of animals (47·9 (sd 10·1) % in well nourished rats and 53·8 (sd 8·0) % in malnourished rats). The results obtained in the present study indicate that malnutrition is associated with a significant increase of spontaneously apoptotic cells. In addition, the data showed that the fraction of thymocytes susceptible to dexamethasone-induced apoptosis was similar in well nourished and malnourished animals. The greater levels of spontaneously apoptotic cells associated with malnutrition could be related to alterations of the microenvironment of the thymus and/or to an obstruction of early thymocyte maturation.