We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider compound Poisson claims reserving models applied to the paid claims and to the number of payments run-off triangles. We extend the standard Poisson-gamma assumption to account for over-dispersion in the payment counts and to account for various mean and variance structures in the individual payments. Two generalized linear models are applied consecutively to predict the unpaid claims. A bootstrap is used to estimate the mean squared error of prediction and to simulate the predictive distribution of the unpaid claims. We show that the extended compound Poisson models make reasonable predictions of the unpaid claims.
This paper provides a quasi-likelihood or minimum-contrast-type method for the parameter estimation of random fields in the frequency domain based on higher-order information. The estimation technique uses the spectral density of the general kth order and allows for possible long-range dependence in the random fields. To avoid bias due to edge effects, data tapering is incorporated into the method. The suggested minimum contrast functional is linear with respect to the periodogram of kth order, hence kernel estimation for the spectral densities is not needed. Furthermore, discretization is not required in the estimation of continuously observed random fields. The consistency and asymptotic normality of the resulting estimators are established. Illustrative applications of the method to some problems in mathematical finance and signal detection are given.
A general class of Markovian non-Gaussian bifurcating models for cell lineage data is presented. Examples include bifurcating autoregression, random coefficient autoregression, bivariate exponential, bivariate gamma, and bivariate Poisson models. Quasi-likelihood estimation for the model parameters and large-sample properties of the estimates are discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.