Mammoth (Mammuthus sp.) teeth are relatively abundant in Quaternary deposits from Eurasia and North America, and their isotopic compositions can be used to reconstruct past seasonal patterns in precipitation, diet, and migration. Strategies for collecting and interpreting such data, however, are strongly dependent on growth rates, which can vary among species, individuals, and within teeth. In this study, we use histological and isotopic measurements to determine enamel growth rates for a Columbian mammoth (Mammuthus columbi) tooth in two directions. Using histology, the growth rate through the enamel thickness (ET; perpendicular to the height of the tooth) is estimated at 0.8 to 1.5 mm/yr. Isotopic sampling through the innermost 0.36 mm of the ET recovered less than half a period of variation (i.e., half an inferred year of growth), which is consistent with the histological estimate for ET growth rate. A combination of histological and isotopic measurements suggests that the enamel extension rate (growth in the height of the tooth) is 13–14 mm/yr. Knowledge of enamel growth rates should improve the design and interpretation of future isotopic studies of mammoth teeth. The combination of histological and isotopic measurements may also prove useful in determining growth rates for other extinct taxa.