We analyzed whole-genome sequencing (WGS) data from 51 populations and combined WGS and array data from 89 populations. Multiple types of polygenic scores (PGS) were employed, derived from multi-ancestry, between-family genome-wide association study (GWAS; MIX-Height), European-ancestry, between-family GWAS (EUR-Height), and European-ancestry siblings GWAS (SIB-Height). Our findings demonstrate that both genetic and environmental factors significantly influence adult body height between populations. Models that included both genetic and environmental predictors best explained population differences in adult body height, with the MIX-Height PGS and environmental factors (Human Development Index [HDI] + per capita caloric intake) achieving an R2 of .83. Our findings shed light on Deaton’s ‘African paradox’, which noted the relatively tall stature of African populations despite poor nutrition and childhood health. Contrary to Deaton’s hypotheses, we demonstrate that both genetic differences and environmental factors significantly influence body height in countries with high infant mortality rates. This suggests that the observed tall stature in African populations can be attributed, in part, to a high genetic predisposition for body height. Furthermore, tests of divergent selection based on the QST (i.e., standardized measure of the genetic differentiation of a quantitative trait among populations) and FST (neutral marker loci) measures exceeded neutral expectations, reaching statistical significance (p < .01) with the MIX-Height PGS but not with the SIB-Height PGS. This result indicates potential selective pressures on body height-related genetic variants across populations.