Significant research has been aimed at the development and control of teleoperator systems due to both the practical importance and the challenging theoretical nature of the problem. Two controllers are developed in this paper for a nonlinear teleoperator system that target coordination of the master and slave manipulators and passivity of the overall system. The first controller is proven to yield a semi-global asymptotic result in the presence of parametric uncertainty in the master and slave manipulator dynamic models. The second controller yields a global asymptotic result despite unmeasurable user and environmental input forces. To develop each controller, a transformation encodes the coordination and passivity objectives in the closed loop system. The coordinated system is forced to track a dynamic system to assist in meeting all control objectives. Finally, continuous nonlinear integral feedback terms are used to accommodate for incomplete system knowledge for both controllers. Lyapunov-based techniques are used to prove that all control objectives are met and that all signals are bounded.