Daley and Vesilo (1997) introduced long-range count dependence (LRcD) for stationary point processes on the real line as a natural augmentation of the classical long-range dependence of the corresponding interpoint sequence. They studied LRcD for some renewal processes and some output processes of queueing systems, continuing the previous research on such processes of Daley (1968), (1975). Subsequently, Daley (1999) showed that a necessary and sufficient condition for a stationary renewal process to be LRcD is that under its Palm measure the generic lifetime distribution has infinite second moment. We show that point processes dominating, in a sense of stochastic ordering, LRcD point processes are LRcD, and as a corollary we obtain that for arbitrary stationary point processes with finite intensity a sufficient condition for LRcD is that under Palm measure the interpoint distances are positively dependent (associated) with infinite second moment. We give many examples of LRcD point processes, among them exchangeable, cluster, moving average, Wold, semi-Markov processes and some examples of LRcD point processes with finite second Palm moment of interpoint distances. These examples show that, in general, the condition of infiniteness of the second moment is not necessary for LRcD. It is an open question whether the infinite second Palm moment of interpoint distances suffices to make a stationary point process LRcD.