C*-algebras form a 2-category with *-homomorphisms or correspondences as morphisms and unitary intertwiners as 2-morphisms. We use this structure to define weak actions of 2-categories, weakly equivariant maps between weak actions and modifications between weakly equivariant maps. In the group case, we identify the resulting notions with known ones, including Busby–Smith twisted actions and the equivalence of such actions, covariant representations and saturated Fell bundles. For 2-groups, weak actions combine twists in the sense of Green, and Busby and Smith.
The Packer–Raeburn Stabilization Trick implies that all Busby–Smith twisted group actions of locally compact groups are Morita equivalent to classical group actions. We generalize this to actions of strict 2-groupoids.