We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patent blue (4-[(4-diethylaminophenyl)-(4-diethylazaniumylidencyclohexa-2,5-dienyliden) methyl]-6-hydroxy-3-sulfo-benzolsulfonate, sodium salt) is a contrast dye used for the intraoperative detection of the primary lymphatic nodes draining the area of tumour infiltration. The dye is known to interact with pulse oximeter readings. However, the degree of alteration seems to be moderate and predictable when patent blue is injected into the perimammilar region during breast surgery.
Methods
Here we report severe interference with the anaesthetic monitoring when patent blue was injected into the cervix prior to laparoscopy-assisted radical vaginal hysterectomy for cervical cancer.
Results
Injection of patent blue into the cervix induced a rapid (within 14 ± 9 min after the injection) and severe (from ⩾98% to 89 ± 2%) decrease in pulse oximeter readings, accompanied by positive methaemoglobin values of 7.3 ± 2.5% (arterial co-oximetry, Bayer Rapidlab 865 blood gas analyser; Bayer, Fernwald, Germany). Control of these values by a different device (Radiometer ABL co-oximeter blood gas analyser; Radiometer, Willich, Germany) yielded negative methaemoglobin results (<1.7%, mean 0.9 ± 0.6%). The arterial PO2 was normal in all patients throughout the procedure.
Conclusion
Injection of patent blue into the cervix uteri interferes dramatically with pulse oximeter readings. This situation is further complicated by device-dependent arterial co-oximetry methaemoglobin results. For the time being it is recommendable to monitor adequate oxygenation of the patient in the presence of patent blue by regular control of the arterial PO2. Clearly, the unresolved issue of reliable methaemoglobin determination in the presence of patent blue remains a matter of clinical concern for anaesthetists.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.