We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Radiative properties are fundamental for plasma diagnostics and hydro-simulations. For this reason, there is a high interest in their determination and they are a current topic of investigation both in astrophysics and inertial fusion confinement research. In this work a flexible computation package for calculating radiative properties for low and high Z optically thin and thick plasmas, both under local thermodynamic equilibrium and non-local thermodynamic equilibrium conditions, named RAPCAL is presented. This code has been developed with the aim of providing accurate radiative properties for low and medium Z plasmas within the context of detailed level accounting approach and for heavy elements under the detailed configuration accounting approach. In order to show the capabilities of the code, there are presented calculations of some radiative properties for carbon, aluminum, krypton and xenon plasmas under local thermodynamic and non-local thermodynamic equilibrium conditions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.