We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study discrete-time Markov decision processes with Borel state and action spaces. The criterion is to minimize average expected costs, and the costs may have neither upper nor lower bounds. We first provide two average optimality inequalities of opposing directions and give conditions for the existence of solutions to them. Then, using the two inequalities, we ensure the existence of an average optimal (deterministic) stationary policy under additional continuity-compactness assumptions. Our conditions are slightly weaker than those in the previous literature. Also, some new sufficient conditions for the existence of an average optimal stationary policy are imposed on the primitive data of the model. Moreover, our approach is slightly different from the well-known ‘optimality inequality approach’ widely used in Markov decision processes. Finally, we illustrate our results in two examples.
In this paper, we consider denumerable-state continuous-time Markov decision processes with (possibly unbounded) transition and reward rates and general action space under the discounted criterion. We provide a set of conditions weaker than those previously known and then prove the existence of optimal stationary policies within the class of all possibly randomized Markov policies. Moreover, the results in this paper are illustrated by considering the birth-and-death processes with controlled immigration in which the conditions in this paper are satisfied, whereas the earlier conditions fail to hold.
A semi-Markov decision process, with a denumerable multidimensional state space, is considered. At any given state only a finite number of actions can be taken to control the process. The immediate reward earned in one transition period is merely assumed to be bounded by a polynomial and a bound is imposed on a weighted moment of the next state reached in one transition. It is shown that under an ergodicity assumption there is a stationary optimal policy for the long-run average reward criterion. A queueing network scheduling problem, for which previous criteria are inapplicable, is given as an application.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.