In this article, the dynamic response in a multilayered medium is analyzed by Laplace transform technique. The thickness and material constant in each layer are different. The medium is subjected an uniformly distributed loading at the upper surface, and the bottom surface is assumed to be traction-free. The analytical solutions are presented in the transform domain and the numerical Laplace inversion (Durbin's formula) is performed to obtain the transient response in time domain. The effective material concept is usually used to simplify multilayered media in static analysis. The numerical calculations of the transient responses for randomly distributed, periodically distributed, and continuously distributed multilayered media are performed to investigate if the effective material concept is suitable for dynamic analysis.