We propose a derivation of a nonequilibrium Langevin dynamics for a large particleimmersed in a background flow field. A single large particle is placed in an ideal gasheat bath composed of point particles that are distributed consistently with thebackground flow field and that interact with the large particle through elasticcollisions. In the limit of small bath atom mass, the large particle dynamics converges inlaw to a stochastic dynamics. This derivation follows the ideas of [P. Calderoni, D. Dürrand S. Kusuoka, J. Stat. Phys. 55 (1989) 649–693. D. Dürr,S. Goldstein and J. Lebowitz, Z. Wahrscheinlichkeit 62(1983) 427–448. D. Dürr, S. Goldstein and J.L. Lebowitz. Comm. Math. Phys.78 (1981) 507–530.] and provides extensions to handle the nonzerobackground flow. The derived nonequilibrium Langevin dynamics is similar to the dynamicsin [M. McPhie, P. Daivis, I. Snook, J. Ennis and D. Evans, Phys. A299 (2001) 412–426]. Some numerical experiments illustrate the useof the obtained dynamic to simulate homogeneous liquid materials under shear flow.