We propose a model of a passive nerve cylinder undergoing random stimulus along its length. It is shown that this model is approximated by the solution of a stochastic partial differential equation. Numerous properties of the sample paths are derived, such as their modulus of continuity, quadratic and quartic variation, and it is shown that the solution exhibits the phenomenon of flicker noise. The first-passage problem is studied, and it is shown to be connected with a first-hitting time for an infinite-dimensional diffusion.