We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents a binocular vision-IMU (Inertial Measurement Unit) tightly-coupled structure based on a Minimum sigma set Square-Root Unscented Kalman Filter (M-SRUKF) for real time navigation applications. Though the M-SRUKF has only half the sigma points of the SRUKF, it has the same accuracy as the SRUKF when applied to the binocular vision-IMU tightly-coupled system. As the Kalman filter flow is a kind of square-root system, the stability of the system can be guaranteed. The measurement model and the outlier rejection model of this tightly-coupled system not only utilises the epipolar constraint and the trifocal tensor geometry constraint between the consecutive two image pairs, but also uses the quadrifocal tensor geometry among four views. The structure of the binocular vision-IMU tightly-coupled system is in the form of an error state, and the time updates of the state and the state covariance are directly estimated without using Unscented Transformation (UT). Experiments are carried out based on an outdoor land vehicle open source dataset and an indoor Micro Aerial Vehicle (MAV) open source dataset. Results clearly show the effectiveness of the proposed new mechanisation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.