We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The V-groove joint of thick wall intersecting pipes must be filled by multi-layer weld. The welding path of intersecting pipes is complicated, and hence multi-layer welds increase the complexity of the problem. This paper proposes a methodology for path planning of multi-layer weld of thick wall intersecting pipes. The methodology is based on measuring the electrode pose located in both side and front views of intersecting pipes. In order to compensate for the path deviation around the pipe circumference, the measured values are used to interpolate the path of each pass between two views. The methodology has been applied in a case study. Simulation results approve that multi-layer weld appropriately fills the V-groove joint space around the pipe circumference. In addition, collision avoidance between welding torch and pipes is considered by introducing a safety ring. While the robot wrist moves inside the safety ring, no collision occurs. Simulation results show the robustness of the proposed path planning method, introduced for collision avoidance.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.