This paper investigates the problem of how to design the distance between a mobile buoy and the target to derive maximum positioning accuracy with a Moving Long Baseline (MLBL). To that end, the positioning model and the error sources of MLBL are derived, respectively. It is assumed that the position measurement of the mobile buoy and the distance measurement between the mobile buoy and the target are corrupted by white Gaussian noises, and the variance of the distance measurement is distance-dependent. Using tools from estimation theory, the Positioning Accuracy Metric (PAM) is designed with the distance error and the position errors are considered. Based on the PAM, the optimal distance between the mobile buoy and target is deduced when the mobile buoys are in optimal geometry. Simulation examples illustrate the results.