We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The maximum-entropy formalism developed by E. T. Jaynes is applied to the breaking strain of a bundle of fibers of various cross-sectional areas. When the bundle is subjected to a tensile load, and it is assumed that Hooke's law applies up to the breaking strain of the fibers, it is proved that the survival strain distribution for a fiber in the bundle is restricted to a certain class consisting of generalizations of the log-logistic distribution. Since Jaynes's formalism is a generalization of statistical thermodynamics, parallels are drawn between concepts in thermodynamics and in the theory of inhomogeneous bundles of fibers. In particular, heat transfer corresponds to damage to the bundle in the form of broken fibers, and the negative reciprocal of the parameter corresponding to thermodynamic temperature is the resistance of the bundle to damage.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.