We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A dynamic factor model is proposed for the analysis of multivariate nonstationary time series in the time domain. The nonstationarity in the series is represented by a linear time dependent mean function. This mild form of nonstationarity is often relevant in analyzing socio-economic time series met in practice. Through the use of an extended version of Molenaar's stationary dynamic factor analysis method, the effect of nonstationarity on the latent factor series is incorporated in the dynamic nonstationary factor model (DNFM). It is shown that the estimation of the unknown parameters in this model can be easily carried out by reformulating the DNFM as a covariance structure model and adopting the ML algorithm proposed by Jöreskog. Furthermore, an empirical example is given to demonstrate the usefulness of the proposed DNFM and the analysis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.