We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter covers the quantum algorithmic primitive called Gibbs sampling. Gibbs sampling accomplishes the task of preparing a digital representation of the thermal state, also known as the Gibbs state, of a quantum system in thermal equilibrium. Gibbs sampling is an important ingredient in quantum algorithms to simulate physical systems. We cover multiple approaches to Gibbs sampling, including algorithms that are analogues of classical Markov chain Monte Carlo algorithms.
This chapter provides an overview of posterior-based specification testing methods and model selection criteria that have been developed in recent years. For the specification testing methods, the first method is the posterior-based version of IOSA test. The second method is motivated by the power enhancement technique. For the model selection criteria, we first review the deviance information criterion (DIC). We discuss its asymptotic justification and shed light on the circumstances in which DIC fails to work. One practically relevant circumstance is when there are latent variables that are treated as parameters. Another important circumstance is when the candidate model is misspecified. We then review DICL for latent variable models and DICM for misspecified models.
This chapter reviews alternative methods proposed in the literature for estimating discrete-time stochastic volatility models and illustrates the details of their application. The methods reviewed are classified as either frequentist or Bayesian. The methods in the frequentist class include generalized method of moments, quasi-maximum likelihood, empirical characteristic function, efficient method of moments, and simulated maximum likelihood based on Laplace-based importance sampler. The Bayesian methods include single-move Markov chain Monte Carlo, multimove Markov chain Monte Carlo, and sequential Monte Carlo.
This chapter overviews three recently developed posterior test statistics for hypothesis testing based on posterior output. These three statistics can be viewed as the posterior version of the trinity of test statistics based on maximum likelihood (ML), namely, the likelihood ratio (LR) test, the Lagrange multiplier (LM) test, and the Wald test. The asymptotic distributions of the test statistics are discussed under repeated sampling. Furthermore, based on the Bernstein–von Mises theorem, the equivalence of the confidence interval construction between the set of posterior tests and their frequentist counterparts is developed, giving the posterior tests a frequentist asymptotic justification. The three statistics are applicable to many popular financial econometric models, including asset pricing models,copula models, and so on. Studies based on simulated data and real data in the context of several financial econometric models are carried out to illustrate the finite sample behavior and the usefulness of the test statistics.
We study the Markov chain Monte Carlo estimator for numerical integration for functions that do not need to be square integrable with respect to the invariant distribution. For chains with a spectral gap we show that the absolute mean error for $L^p$ functions, with $p \in (1,2)$, decreases like $n^{({1}/{p}) -1}$, which is known to be the optimal rate. This improves currently known results where an additional parameter $\delta \gt 0$ appears and the convergence is of order $n^{(({1+\delta})/{p})-1}$.
In this paper, we propose a novel and highly effective variational Bayesian expectation maximization-maximization (VBEM-M) inference method for log-linear cognitive diagnostic model (CDM). In the implementation of the variational Bayesian approach for the saturated log-linear CDM, the conditional variational posteriors of the parameters that need to be derived are in the same distributional family as the priors, the VBEM-M algorithm overcomes this problem. Our algorithm can directly estimate the item parameters and the latent attribute-mastery pattern simultaneously. In contrast, Yamaguchi and Okada’s (2020a) variational Bayesian algorithm requires a transformation step to obtain the item parameters for the log-linear cognitive diagnostic model (LCDM). We conducted multiple simulation studies to assess the performance of the VBEM-M algorithm in terms of parameter recovery, execution time, and convergence rate. Furthermore, we conducted a series of comparative studies on the accuracy of parameter estimation for the DINA model and the saturated LCDM, focusing on the VBEM-M, VB, expectation-maximization, and Markov chain Monte Carlo algorithms. The results indicated that our method can obtain more stable and accurate estimates, especially for the small sample sizes. Finally, we demonstrated the utility of the proposed algorithm using two real datasets.
We present an hierarchical Bayes approach to modeling parameter heterogeneity in generalized linear models. The model assumes that there are relevant subpopulations and that within each subpopulation the individual-level regression coefficients have a multivariate normal distribution. However, class membership is not known a priori, so the heterogeneity in the regression coefficients becomes a finite mixture of normal distributions. This approach combines the flexibility of semiparametric, latent class models that assume common parameters for each sub-population and the parsimony of random effects models that assume normal distributions for the regression parameters. The number of subpopulations is selected to maximize the posterior probability of the model being true. Simulations are presented which document the performance of the methodology for synthetic data with known heterogeneity and number of sub-populations. An application is presented concerning preferences for various aspects of personal computers.
We propose a nonparametric item response theory model for dichotomously-scored items in a Bayesian framework. The model is based on a latent class (LC) formulation, and it is multidimensional, with dimensions corresponding to a partition of the items in homogenous groups that are specified on the basis of inequality constraints among the conditional success probabilities given the latent class. Moreover, an innovative system of prior distributions is proposed following the encompassing approach, in which the largest model is the unconstrained LC model. A reversible-jump type algorithm is described for sampling from the joint posterior distribution of the model parameters of the encompassing model. By suitably post-processing its output, we then make inference on the number of dimensions (i.e., number of groups of items measuring the same latent trait) and we cluster items according to the dimensions when unidimensionality is violated. The approach is illustrated by two examples on simulated data and two applications based on educational and quality-of-life data.
This article devises a Bayesian multivariate formulation for analysis of ordinal data that records teacher classroom performance along multiple dimensions to assess aspects characterizing good instruction. Study designs for scoring teachers seek to measure instructional performance over multiple classroom measurement event sessions at varied occasions using disjoint intervals within each session and employment of multiple ratings on intervals scored by different raters; a design which instantiates a nesting structure with each level contributing a source of variation in recorded scores. We generally possess little a priori knowledge of the existence or form of a sparse generating structure for the multivariate dimensions at any level in the nesting that would permit collapsing over dimensions as is done under univariate modeling. Our approach composes a Bayesian data augmentation scheme that introduces a latent continuous multivariate response linked to the observed ordinal scores with the latent response mean constructed as an additive multivariate decomposition of nested level means that permits the extraction of de-noised continuous teacher-level scores and the associated correlation matrix. A semi-parametric extension facilitates inference for teacher-level dependence among the dimensions of classroom performance under multi-modality induced by sub-groupings of rater perspectives. We next replace an inverse Wishart prior specified for the teacher covariance matrix over dimensions of instruction with a factor analytic structure to allow the simultaneous assessment of an underlying sparse generating structure. Our formulation for Bayesian factor analysis employs parameter expansion with an accompanying post-processing sign re-labeling step of factor loadings that together reduce posterior correlations among sampled parameters to improve parameter mixing in our Markov chain Monte Carlo (MCMC) scheme. We evaluate the performance of our formulation on simulated data and make an application for the assessment of the teacher covariance structure with a dataset derived from a study of middle and high school algebra teachers.
It is shown that measurement error in predictor variables can be modeled using item response theory (IRT). The predictor variables, that may be defined at any level of an hierarchical regression model, are treated as latent variables. The normal ogive model is used to describe the relation between the latent variables and dichotomous observed variables, which may be responses to tests or questionnaires. It will be shown that the multilevel model with measurement error in the observed predictor variables can be estimated in a Bayesian framework using Gibbs sampling. In this article, handling measurement error via the normal ogive model is compared with alternative approaches using the classical true score model. Examples using real data are given.
Higher-order latent traits are proposed for specifying the joint distribution of binary attributes in models for cognitive diagnosis. This approach results in a parsimonious model for the joint distribution of a high-dimensional attribute vector that is natural in many situations when specific cognitive information is sought but a less informative item response model would be a reasonable alternative. This approach stems from viewing the attributes as the specific knowledge required for examination performance, and modeling these attributes as arising from a broadly-defined latent trait resembling the ϑ of item response models. In this way a relatively simple model for the joint distribution of the attributes results, which is based on a plausible model for the relationship between general aptitude and specific knowledge. Markov chain Monte Carlo algorithms for parameter estimation are given for selected response distributions, and simulation results are presented to examine the performance of the algorithm as well as the sensitivity of classification to model misspecification. An analysis of fraction subtraction data is provided as an example.
A Bayesian procedure to estimate the three-parameter normal ogive model and a generalization of the procedure to a model with multidimensional ability parameters are presented. The procedure is a generalization of a procedure by Albert (1992) for estimating the two-parameter normal ogive model. The procedure supports analyzing data from multiple populations and incomplete designs. It is shown that restrictions can be imposed on the factor matrix for testing specific hypotheses about the ability structure. The technique is illustrated using simulated and real data.
The analysis of variance, and mixed models in general, are popular tools for analyzing experimental data in psychology. Bayesian inference for these models is gaining popularity as it allows to easily handle complex experimental designs and data dependence structures. When working on the log of the response variable, the use of standard priors for the variance parameters can create inferential problems and namely the non-existence of posterior moments of parameters and predictive distributions in the original scale of the data. The use of the generalized inverse Gaussian distributions with a careful choice of the hyper-parameters is proposed as a general purpose option for priors on variance parameters. Theoretical and simulations results motivate the proposal. A software package that implements the analysis is also discussed. As the log-transformation of the response variable is often applied when modelling response times, an empirical data analysis in this field is reported.
A Metropolis–Hastings Robbins–Monro (MH-RM) algorithm for high-dimensional maximum marginal likelihood exploratory item factor analysis is proposed. The sequence of estimates from the MH-RM algorithm converges with probability one to the maximum likelihood solution. Details on the computer implementation of this algorithm are provided. The accuracy of the proposed algorithm is demonstrated with simulations. As an illustration, the proposed algorithm is applied to explore the factor structure underlying a new quality of life scale for children. It is shown that when the dimensionality is high, MH-RM has advantages over existing methods such as numerical quadrature based EM algorithm. Extensions of the algorithm to other modeling frameworks are discussed.
This paper studies three models for cognitive diagnosis, each illustrated with an application to fraction subtraction data. The objective of each of these models is to classify examinees according to their mastery of skills assumed to be required for fraction subtraction. We consider the DINA model, the NIDA model, and a new model that extends the DINA model to allow for multiple strategies of problem solving. For each of these models the joint distribution of the indicators of skill mastery is modeled using a single continuous higher-order latent trait, to explain the dependence in the mastery of distinct skills. This approach stems from viewing the skills as the specific states of knowledge required for exam performance, and viewing these skills as arising from a broadly defined latent trait resembling the θ of item response models. We discuss several techniques for comparing models and assessing goodness of fit. We then implement these methods using the fraction subtraction data with the aim of selecting the best of the three models for this application. We employ Markov chain Monte Carlo algorithms to fit the models, and we present simulation results to examine the performance of these algorithms.
This paper considers the reflection unidentifiability problem in confirmatory factor analysis (CFA) and the associated implications for Bayesian estimation. We note a direct analogy between the multimodality in CFA models that is due to all possible column sign changes in the matrix of loadings and the multimodality in finite mixture models that is due to all possible relabelings of the mixture components. Drawing on this analogy, we derive and present a simple approach for dealing with reflection in variance in Bayesian factor analysis. We recommend fitting Bayesian factor analysis models without rotational constraints on the loadings—allowing Markov chain Monte Carlo algorithms to explore the full posterior distribution—and then using a relabeling algorithm to pick a factor solution that corresponds to one mode. We demonstrate our approach on the case of a bifactor model; however, the relabeling algorithm is straightforward to generalize for handling multimodalities due to sign invariance in the likelihood in other factor analysis models.
Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show that these methods can be implemented in a flexible way which requires minimal technical sophistication on the part of the end user. After providing an overview of item factor analysis and MCMC, results from several examples (simulated and real) will be discussed. The bulk of these examples focus on models that are problematic for current “gold-standard” estimators. The results demonstrate that it is possible to obtain accurate parameter estimates using MCMC in a relatively user-friendly package.
Samejima’s graded response model (GRM) has gained popularity in the analyses of ordinal response data in psychological, educational, and health-related assessment. Obtaining high-quality point and interval estimates for GRM parameters attracts a great deal of attention in the literature. In the current work, we derive generalized fiducial inference (GFI) for a family of multidimensional graded response model, implement a Gibbs sampler to perform fiducial estimation, and compare its finite-sample performance with several commonly used likelihood-based and Bayesian approaches via three simulation studies. It is found that the proposed method is able to yield reliable inference even in the presence of small sample size and extreme generating parameter values, outperforming the other candidate methods under investigation. The use of GFI as a convenient tool to quantify sampling variability in various inferential procedures is illustrated by an empirical data analysis using the patient-reported emotional distress data.
This study develops Markov Chain Monte Carlo (MCMC) estimation theory for the General Condorcet Model (GCM), an item response model for dichotomous response data which does not presume the analyst knows the correct answers to the test a priori (answer key). In addition to the answer key, respondent ability, guessing bias, and difficulty parameters are estimated. With respect to data-fit, the study compares between the possible GCM formulations, using MCMC-based methods for model assessment and model selection. Real data applications and a simulation study show that the GCM can accurately reconstruct the answer key from a small number of respondents.
Piecewise growth mixture models are a flexible and useful class of methods for analyzing segmented trends in individual growth trajectory over time, where the individuals come from a mixture of two or more latent classes. These models allow each segment of the overall developmental process within each class to have a different functional form; examples include two linear phases of growth, or a quadratic phase followed by a linear phase. The changepoint (knot) is the time of transition from one developmental phase (segment) to another. Inferring the location of the changepoint(s) is often of practical interest, along with inference for other model parameters. A random changepoint allows for individual differences in the transition time within each class. The primary objectives of our study are as follows: (1) to develop a PGMM using a Bayesian inference approach that allows the estimation of multiple random changepoints within each class; (2) to develop a procedure to empirically detect the number of random changepoints within each class; and (3) to empirically investigate the bias and precision of the estimation of the model parameters, including the random changepoints, via a simulation study. We have developed the user-friendly package BayesianPGMM for R to facilitate the adoption of this methodology in practice, which is available at https://github.com/lockEF/BayesianPGMM. We describe an application to mouse-tracking data for a visual recognition task.