Previous work on the concept of a limiting conditional age distribution of a discrete-state continuous-time Markov process with one absorbing state is generalised. The generalisation allows this process to have a finite number of absorbing states and the associated return process to have an arbitrary initial distribution on the transient states of the absorbing process. If the return process is ρ-recurrent, possesses the strong ratio limit property and satisfies some further requirements then the limiting age distribution exists. The proof of this result requires a new representation of the ρ-invariant measure of the return process.
The following examples are treated, (a) finite state space birth-death processes, (b) Markov branching processes and the linear death process, and (c) the linear birth and death process with killing.