The Kirkland Conglomerate and the Benan Conglomerate and associated sediments of the Barr Group (Ordovician—Llanvirn-Llandeilo) of the Girvan district, SW Scotland record the development of two fan-delta systems situated on the northern margin of Iapetus. The intervening Stinchar Limestone represents a shallow marine fan-delta abandonment facies. Subaerial fan-delta deposits are seen at the lowest exposed horizons within the Kirkland Conglomerate. Transgression and eventual abandonment of the fan-delta system is recorded by (1) matrix-rich gravels forming the topmost horizons of the unit. (2) subaqueous distributary channel sands of the overlying transitional sandstone and associated shallow-marine carbonates of the Auchensoul Limestone and (3) shallow-marine sandstones of the Confinis Flags. Following a period of shallow-water sedimentation (Stinchar Limestone), a phase of rapid subsidence occurred during the upper Llandeilo, broadly synchronous with the Nemagraptus gracilis Zone transgression. Lowermost horizons of the succeeding Benan Conglomerate comprise re-sedimented gravels and laterally equivalent ‘outer shelf’ deposits (Superstes Mudstone). Renewal of coarse clastic sedimentation resulted from source area uplift related to granite plutonism, responsible also for the rapid subsidence of basinal areas. Fan-delta progradation is recorded by the occurrence of braided-fluvial deposits and shallow-marine carbonates at higher stratigraphical levels within the unit. Progradation of the fan-delta complex resulted from a gradual reduction in subsidence rates along basin-margin faults.
Fan-deltas of the Barr Group prograded southwards, from a SW—NE-trending faultdelineated basin margin, across a narrow shelf area. To the S of the shelf area defined by Barr Group outcrop, sediments of the Tappins complex accumulated in outer shelf, ?slope and base of slope settings.
The thickness of individual conglomerate units (>150 m—Kirkland Conglomerate, and up to 700 m—Benan Conglomerate), the associated high sedimentation rates, narrowness of the shelf area, and distribution and style of basin-margin faults indicate that oblique-slip motion along the northern margin of Iapetus may have provided a major control over Middle Ordovician sedimentation in the Girvan district.