In this paper we use the Leray–Schauder continuation method to study the existence of solutions for semilinear differential equations Lu + g(x, u) = h, in which the linear operator L on L2(Ω) may be non-self-adjoint, the L2(Ω)-function h belongs to N⊥(L), the nonlinear term g(x, u) ∈ O(|u|α) as |u| → ∞ for some 0 ≤ α < 1 and satisfies
for all v ∈ N(L) – {0}, where and