We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fibre-optic laryngoscopy is still widely used in daily clinical practice; however, high-definition laryngoscopy using narrow band imaging could be more reliable in characterising pharyngeal and laryngeal lesions.
Methods
Endoscopic videos were assessed in a tertiary referral hospital by 12 observers with different levels of clinical experience. Thirty pairs of high-definition laryngoscopy with narrow band imaging and fibre-optic laryngoscopy videos were judged twice, with an interval of two to four weeks, in a random order. Inter- and intra-observer reliability, sensitivity and specificity were calculated in terms of detecting a malignant lesion and a specific histological entity, for beginners, trained observers and experts.
Results
Using high-definition laryngoscopy with narrow band imaging, inter-observer reliability for detecting malignant lesions increased from moderate to substantial in trained observers and experts (high-definition laryngoscopy with narrow band imaging κ = 0.66 and κ = 0.77 vs fibre-optic laryngoscopy κ = 0.51 and κ = 0.56, for trained observers and experts respectively) and sensitivity increased by 16 per cent.
Conclusion
Inter-observer reliability increased with the level of clinical experience, especially when using high-definition laryngoscopy with narrow band imaging.
To describe the utility of sleep nasendoscopy in determining the level of upper airway obstruction compared to microlaryngotracheobronchoscopy.
Methods
A retrospective observational study was conducted at a tertiary level paediatric hospital. Patients clinically diagnosed with upper airway obstruction warranting surgical intervention (i.e. with obstructive sleep apnoea or laryngomalacia) were included. These patients underwent sleep nasendoscopy in the anaesthetic room; microlaryngotracheobronchoscopy was subsequently performed and findings were compared.
Results
Twenty-seven patients were included in the study. Sleep nasendoscopy was able to induce stridor or stertor, and to detect obstruction at the level of palate and pharynx, including tongue base collapse, that was not observed with microlaryngotracheobronchoscopy. Only 47 per cent of patients who had prolapse or indrawing of arytenoids on sleep nasendoscopy had similar findings on microlaryngotracheobronchoscopy. However, microlaryngotracheobronchoscopy was better in diagnosing shortened aryepiglottic folds.
Conclusion
This study demonstrates the utility of sleep nasendoscopy in determining the level and severity of obstruction by mimicking physiological sleep dynamics of the upper airway.
During an endoscopic arytenoidectomy, an intubation tube must be elevated anteriorly with the laryngoscope to ensure an adequate surgical field. This paper describes a new laryngoscope that has a canal along the outer wall of the body and a ridge which runs along the canal.
Method:
Ten patients underwent endoscopic total arytenoidectomy using this new laryngoscope and 10 patients underwent the same operation using a regular laryngoscope.
Results:
The duration of all operations ranged between 25 and 65 minutes, with a median duration of 42.5 minutes. The median duration with the new laryngoscope was 39 minutes, and that with the regular laryngoscope was 49 minutes; this difference was statistically significant (p < 0.05).
Conclusion:
This new laryngoscope shortened the duration of the endoscopic arytenoidectomy and facilitated the procedure by enlarging the surgical field. This new laryngoscope may be a beneficial surgical instrument for posterior endoscopic laryngeal operations.
Flexible nasoendoscope is an important tool in otorhinolaryngology practice. The endoscope needs to be decontaminated prior to use in the next patient. The 2005 ENT-UK guidance for cleaning fibre-optic laryngoscopes stated that the ideal disinfecting agent and process should be effective and have low capital and maintenance costs.
Objective:
To compare the efficacy and cost-effectiveness of chlorine dioxide wipes versus automated washer, for decontamination of flexible nasendoscopes.
Methods:
A sequential cohort, in vitro study was performed to test the efficacy of chlorine dioxide wipes and automated washer. Costs were also calculated.
Results:
After deliberate bacterial contamination of the nasendoscope and subsequent decontamination, swab samples from the endoscope showed Staphylococcus epidermidis growth in 2 per cent (1/50 swabs) of the chlorine dioxide wipe group and in 28 per cent (14/50 swabs) of the automated washer group (p = 0.00). Based on a projected 10-year cost calculation, the automated washer was cheaper.
Conclusion:
Further studies are required to test whether these results are replicable. A similar study should be performed using real patients, to check the significance of improper decontamination.
In emergency trauma situations, manual in-line stabilization of the cervical spine is recommended to reduce cervical spine movement during intubation. The aim of this study was to compare the effect of manual in-line stabilization during different intubation techniques on three-dimensional cervical spine movements and times to intubation.
Methods
Forty-eight subjects without any history of trauma, inflammatory or degenerative disorder of the cervical spine were randomly grouped, regardless of gender or age. All underwent elective surgery under general anaesthesia. Under manual in-line stabilization, laryngeal intubation with Macintosh laryngoscope, intubating laryngeal mask airway, fibre-endoscopic oral intubation and fibre-endoscopic nasal intubation was performed. During the intubation process, cervical three-dimensional motion was detected by an ultrasound real-time motion analysis system and intubation times were measured.
Results
Cervical spine range in the extension/flexion direction of orolaryngeal intubation with Macintosh (17.57 ± 8.23°) showed significantly more movement than using the intubating laryngeal mask airway (4.60 ± 1.51°) and fibreoptic procedures. Intubating laryngeal mask airway was significantly different than the fibreoptic intubation techniques. There was also a significant difference between oral (3.61 ± 2.25°) nasal and (5.88 ± 3.11°) fibreoptic intubation. Times to intubation all differed significantly (P < 0.05) for the Macintosh laryngoscope (27.25 ± 8.56 s) and for the intubating laryngeal mask airway (16.5 ± 9.76 s). Fibreendoscopic laryngoscopic oral (52.91 ± 56.27 s) and nasal (82.32 ± 54.06 s) intubation resulted in further prolongation of the times to intubation.
Conclusions
The intubating laryngeal mask airway with manual in-line stabilization is a potentially useful adjunct to intubation of patients with potential cervical spine injury, if there are no contraindications to these methods. These results predict that fibreoptic procedures may be a safe instrument for airway management in patients with potential cervical spine injuries; however, the main disadvantages are the longer intubation times.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.