Let E be a coanalytic equivalence relation on a Polish space X and (An)n∈ω a sequence of analytic subsets of X. We prove that if lim supn∈kAn meets uncountably many E-equivalence classes for every K ∈ [ω]ω, then there exists K ∈ [ω]ω such that ∩n∈kAn contains a perfect set of pairwise E-inequivalent elements.