A computationally fast inverse kinematic scheme is derived which solves robot's end-effector (EE) trajectories in terms of joint trajectories. The inverse kinematic problem (IKP) is cast as a control problem for a simple dynamic system. The resulting closed-loop algorithms are shown to guarantee satisfactory tracking performance. Differently from previous first-order schemes which only solve for joint positions and velocities, we propose here new second order tracking schemes which allow the on-line generation of joint position + velocity + acceleration (PVA) reference trajectories for any computed torque-like controller in sensor-based robot applications. The algorithms do explicitly solve the IKP for both EE position and orientation. Simulation results for a six-degree-of-freedom PUMA-like geometry demonstrate the effectiveness of the scheme, even near singularities.