The role of predation in the regulation of freshwater communities is predicted to decrease along a habitat-duration gradient, from permanent to episodic waters. We tested the role of invertebrate predation in shaping the community structure in a fishless temperate intermittent pond with a three month long hydroperiod by comparing the community structure in two large field enclosures (4.2 m2) with added predators to two enclosures without added predators. The added predators reflected the density and composition of top predators in the pond and comprised weekly additions of dytiscid larvae (for three weeks) followed by weekly additions of odonate nymphs (for five weeks). Compared with the enclosure controls, the predator addition enclosures had fewer dipterans and crustaceans, higher concentrations of benthic ciliates and other protozoans, higher chlorophyll a and bacterial counts, and lower abundance of rotifers. Many treatment effects were temporally variable and this appeared to be linked to predator identity, predator size, and prey availability. Compared with the surrounding pondwater, the enclosed areas had lower abundance of molluscs, ostracods and cladocerans but higher abundance of cyclopoids and higher concentrations of phytoplankton and ciliates. Despite high productivity and seasonally variable predator and prey assemblages, which likely buffered against strong top-down control, we conclude that the top-predators regulate the dipterans and zooplankton in this intermittent pond and that the effects propagated down through the food web to lower trophic levels.