Integer ambiguity validation is pivotal in precise positioning with Global Navigation Satellite Systems (GNSS). Recent research has shown traditionally used ambiguity validation methods can be classified as members of the Integer Aperture (IA) estimators, and by the virtue of the IA estimation, a user controllable IA fail-rate is preferred. However, an appropriately chosen fail-rate is essential for ambiguity validation. In this paper, the upper bound and the lower bound for the IA fail-rate, which are extremely useful even at the designing stage of a GNSS positioning system, have been analysed, and numerical results imply that a meaningful IA fail-rate should be within this range.