We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The hippocampus is an important, complex limbic structure anatomically embedded in the medial temporal lobe of each cerebral cortex, which has been implicated in the pathogenesis of neuro-inflammatory disease conditions. Few studies have focused on the characterization of the MRI neuroimaging signatures of highly physio- pathologically relevant subfields of the hippocampus (CA1, CA4-DG, CA2/CA3, SLRM).
Objectives
Using self-guided manually segmented, Diffusion weighted and NODDI maps created from data obtained from the Human Connectome Project (HCP) we intend to test whether Diffusion MRI-based quantitative imaging parameters (MD, FA, ODI, ISOVF, ICVF), indicative of microstructural characteristics of major hippocampal subfields (CA1, CA2/CA3, CA4-DG and SLRM), correspond to predictions for animal literature and imaging-histology correlations. We will also explore the correlations between these parameters and age.
Methods
We used images from the Public connectome data (updated April 2018), exploring subjects with the 3T MRI sessions obtainable from the WU-Minn HCP Data section. For the purpose of this study, we selected and downloaded 10 preliminary imaging data (6 females and 4 males) based on age variability in the following ranges (26-30, 31-35 and 36+). We manually segmented, and computed quantitative parameters.
Results
Converging and consistent literature allude to decreasing volumes with increasing age. Analyzing the volumes from the diffusion maps (pilot data), this was also the case, with volumes computed from CA1 and DG-CA4 sub regions. IQT also allowed for better appreciation of neuroanatomical boundaries and land marks, hence allowing more regions to be easily manually segmented (addition of CA2/CA3).
Conclusions
Application to Neuroinflammatory imaging data.
Disclosure
No significant relationships.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.