Let {X1 (t), X2 (t), t ≧ 0} be a bivariate birth and death (Markov) process taking non-negative integer values, such that the process {X2(t), t ≧ 0} may influence the growth of the process {X1(t), t ≧ 0}, while the process X2 (·) itself grows without any influence whatsoever of the first process. The process X2 (·) is taken to be a simple linear birth and death process with λ2 and µ2 as its birth and death rates respectively. The process X1 (·) is also assumed to be a linear birth and death process but with its birth and death rates depending on X2 (·) in the following manner: λ (t) = λ1 (θ + X2 (t)); µ(t) = µ1 (θ + X2 (t)). Here λ i, µi and θ are all non-negative constants. By studying the process X1 (·), first conditionally given a realization of the process {X2 (t), t ≧ 0} and then by unconditioning it later on by taking expectation over the process {X2 (t), t ≧ 0} we obtain explicit solution for G in closed form. Again, it is shown that a proper limit distribution of X1 (t) always exists as t→∞, except only when both λ1 > µ1 and λ2 > µ2. Also, certain problems concerning moments of the process, regression of X1 (t) on X2 (t); time to extinction, and the duration of the interaction between the two processes, etc., are studied in some detail.