Kalashnikov and Rachev (1986) have proposed a partial ordering of life distributions which is equivalent to an increasing hazard ratio, when the ratio exists. This model can represent the phenomenon of crossing hazards, which has received considerable attention in recent years. In this paper we study this and two other models of relative ageing. Their connections with common partial orderings in the reliability literature are discussed. We examine the closure properties of the three orderings under several operations. Finally, we give reliability and moment bounds for a distribution when it is ordered with respect to a known distribution.