We introduce two general classes of reflected autoregressive processes, INGAR+ and GAR+. Here, INGAR+ can be seen as the counterpart of INAR(1) with general thinning and reflection being imposed to keep the process non-negative; GAR+ relates to AR(1) in an analogous manner. The two processes INGAR+ and GAR+ are shown to be connected via a duality relation. We proceed by presenting a detailed analysis of the time-dependent and stationary behavior of the INGAR+ process, and then exploit the duality relation to obtain the time-dependent and stationary behavior of the GAR+ process.