We present a Mach 15 air flow over a blunt two-dimensional wedge simulated using the direct molecular simulation method. As electronically excited states are not modelled, the resulting air mixture around the wedge contains the electronic ground states only, namely ${\rm N}_2(\text {X}^1 \varSigma _g^{+})$, ${\rm O}_2(\text {X}^3 \varSigma _g^{-})$, ${\rm NO}(\text {X}^2\varPi _r)$, ${\rm N}(^4{\rm S})$ and ${\rm O}(^3{\rm P})$. All the potential energy surfaces (PESs) that are used to model the various interactions between air particles are ab initio, with two notable exceptions, namely ${\rm N}_2+{\rm NO}$ and ${\rm O}_2+{\rm NO}$. At the selected free-stream conditions, strong vibrational non-equilibrium is observed in the shock layer. The flow is characterized by significant chemical activity, with near-complete oxygen dissociation, considerable formation of NO and minimal molecular nitrogen dissociation. Complex mass diffusion kinetics, driven by composition, temperature and pressure gradients, are identified in the shock layer. All these physical phenomena are directly coupled to, and responsible for, the mechanics of the gas flow and are all solely traceable to the PESs’ inputs, without the need for any thermochemical models, mixing rules or constitutive laws for transport properties. Because the flow is entirely at near-continuum conditions, it is a gas-phase thermophysics benchmark that is useful to enhance the fidelity of continuum models used in computational fluid dynamics of hypersonic flows.