We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let
$(A,\mathfrak m)$
be an excellent two-dimensional normal local domain. In this paper, we study the elliptic and the strongly elliptic ideals of A with the aim to characterize elliptic and strongly elliptic singularities, according to the definitions given by Wagreich and Yau. In analogy with the rational singularities, in the main result, we characterize a strongly elliptic singularity in terms of the normal Hilbert coefficients of the integrally closed
$\mathfrak m$
-primary ideals of A. Unlike
$p_g$
-ideals, elliptic ideals and strongly elliptic ideals are not necessarily normal and necessary, and sufficient conditions for being normal are given. In the last section, we discuss the existence (and the effective construction) of strongly elliptic ideals in any two-dimensional normal local ring.
We give explicit formulas for the Hilbert series of residual intersections of a scheme in terms of the Hilbert series of its conormal modules. In a previous paper, we proved that such formulas should exist. We give applications to the number of equations defining projective varieties and to the dimension of secant varieties of surfaces and three-folds.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.