The scattering of plane SH-wave from a partially debonded shallow cylindrical elastic inclusion in half space is investigated in this paper by complex function method and expansion method of wave function. The debonding regions are considered as multiple arc-shaped interface cracks with non-contacting faces. Firstly, in the inclusion district, the standing wave function in the elastic inclusion with unknown coefficients which satisfies the boundary condition is constructed and generated into the Fourier series; in the half space, the stress and displacement boundary condition around the elastic inclusion can be modeled as the same as the standing wave function in the elastic inclusion. Then, a set of infinite algebraic equations can be obtained around the same boundary and the solution of problem can be gained. In the end, numerical examples of the surface displacement are provided and discussed. It is found that the interface cracks can raise the surface displacement amplitudes to a certain degree.