We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Managed Entry Agreements (MEAs) are increasingly used to address uncertainties arising in the Health Technology Assessment (HTA) process due to immature evidence of new, high-cost medicines on their real-world performance and cost-effectiveness. The literature remains inconclusive on the HTA decision-making factors that influence the utilization of MEAs. We aimed to assess if the uptake of MEAs differs between countries and if so, to understand which HTA decision-making criteria play a role in determining such differences.
Methods
All oncology medicines approved since 2009 in Australia, England, Scotland, and Sweden were studied. Four categories of variables were collected from publicly available HTA reports of the above drugs: (i) Social Value Judgments (SVJs), (ii) Clinical/Economic evidence submitted, (iii) Interpretation of this evidence, and (iv) Funding decision. Conditional/restricted decisions were coded as Listed With Conditions (LWC) other than an MEA or LWC including an MEA (LWCMEA). Cohen's κ-scores measured the inter-rater agreement of countries on their LWCMEA outcomes and Pearson's chi-squared tests explored the association between HTA variables and LWCMEA outcomes.
Results
A total of 74 drug-indication pairs were found resulting in n = 296 observations; 8 percent (n = 23) were LWC and 55 percent (n = 163) were LWCMEA. A poor-to-moderate agreement existed between countries (−.29 < κ < .33) on LWCMEA decisions. Cross-country differences within the LWCMEA sample were partly driven by economic uncertainties and largely driven by SVJs considered across agencies.
Conclusions
A set of HTA-related variables driving the uptake of MEAs across countries was identified. These findings can be useful in future research aimed at informing country-specific, “best-practice” guidelines for successful MEA implementation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.