We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Catastrophic loss data are known to be heavy-tailed. Practitioners then need models that are able to capture both tail and modal parts of claim data. To this purpose, a new parametric family of loss distributions is proposed as a gamma mixture of the generalized log-Moyal distribution from Bhati and Ravi (2018), termed the generalized log-Moyal gamma (GLMGA) distribution. While the GLMGA distribution is a special case of the GB2 distribution, we show that this simpler model is effective in regression modeling of large and modal loss data. Regression modeling and applications to risk measurement are illustrated using a detailed analysis of a Chinese earthquake loss data set, comparing with the results of competing models from the literature. To this end, we discuss the probabilistic characteristics of the GLMGA and statistical estimation of the parameters through maximum likelihood. Further illustrations of the applicability of the new class of distributions are provided with the fire claim data set reported in Cummins et al. (1990) and a Norwegian fire losses data set discussed recently in Bhati and Ravi (2018).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.