We introduce the generalized join the shortest queue model with retrials and two infinite capacity orbit queues. Three independent Poisson streams of jobs, namely a smart, and two dedicated streams, flow into a single-server system, which can hold at most one job. Arriving jobs that find the server occupied are routed to the orbits as follows: Blocked jobs from the smart stream are routed to the shortest orbit queue, and in case of a tie, they choose an orbit randomly. Blocked jobs from the dedicated streams are routed directly to their orbits. Orbiting jobs retry to connect with the server at different retrial rates, i.e., heterogeneous orbit queues. Applications of such a system are found in the modeling of wireless cooperative networks. We are interested in the asymptotic behavior of the stationary distribution of this model, provided that the system is stable. More precisely, we investigate the conditions under which the tail asymptotic of the minimum orbit queue length is exactly geometric. Moreover, we apply a heuristic asymptotic approach to obtain approximations of the steady-state joint orbit queue-length distribution. Useful numerical examples are presented and shown that the results obtained through the asymptotic analysis and the heuristic approach are agreed.