Mechanisms that mediate the calcium influx in mammalian horizontal cells were studied. Horizontal cells (HCs) enzymatically dissociated from the rabbit retina were recorded by the whole-cell configuration of the patch-clamp technique and by calcium image ratioespectrophotometry of Fura-2 loaded cells. AMPA-preferring glutamate receptors were shown to permeate Ca2+ in mammalian HCs by ionic substitution experiments. Furthermore, after blocking the L-type calcium current with nifedipine (100 μM), calcium current through the AMPA-preferring glutamate receptors was measured. Calcium image ratioespectrophotometry was performed on the dissociated HCs in order to determine the changes in the intracellular calcium ([Ca2+]i). Fura-2 microspectrophotometry showed that in HCs, K+-induced cell depolarization promoted an increase in [Ca2+]i, mediated by the L-type calcium channels, since it was abolished in the presence of nifedipine. The increase in [Ca2+]i upon cell depolarization was observed throughout each cell; however, it was maximal at the cell soma. Activation of glutamate receptors in dissociated HCs by glutamate, AMPA or kainate promoted an increase in [Ca2+]i. This increase in [Ca2+]i was abolished in nominally Ca2+-free solution (0 mM Ca2+); in contrast, nifedipine decreased the glutamate-induced influx of calcium in ca. 50%. The present study demonstrates that calcium may permeate through glutamate receptors expressed in HCs of the rabbit retina.