We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Combined free and forced convection Couette-Hartmann flow of a viscous, incompressible and electrically conducting fluid in rotating channel with arbitrary conducting walls in the presence of Hall current is investigated. Boundary conditions for magnetic field and expressions for shear stresses at the walls and mass flow rate are derived. Asymptotic analysis of solution for large values of rotation and magnetic parameters is performed to highlight nature of modified Ekmann and Hartmann boundary layers. Numerical solution of non-linear energy equation and rate of heat transfer at the walls are computed with the help of MATHEMATICA. It is found that velocity depends on wall conductance ratio of moving wall and on the sum of wall conductance ratios of both the walls of channel. There arises reverse flow in the secondary flow direction near central region of the channel due to thermal buoyancy force. Thermal buoyancy force, rotation, Hall current and wall conductance ratios resist primary fluid velocity whereas thermal buoyancy force and Hall current favor secondary fluid velocity in the region near lower wall of the channel. Magnetic field favors both the primary and secondary fluid velocities in the region near lower wall of the channel.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.