We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents an advanced robust active disturbance rejection control (ADRC) for flexible link manipulator (FLM) to track desired trajectories in the joint space and minimize the link’s vibrations. It has been shown that the ADRC technique has a very good disturbance rejection capability. Both the internal dynamics and the external disturbances can be estimated and compensated in real time. The proposed robust ADRC control law is developed to solve the problems existing in the original version of the ADRC related to the disturbance estimation errors and the variation of the parameters. Indeed, these parameters cannot be included in the existing disturbances and then be estimated by the extended state observer. The proposed control law is based on the sliding mode technique, which considers the uncertainties in the control gains and disturbance estimation errors. Lyapunov theory is used to prove the closed-loop stability of the system. The proposed control strategy is simulated and tested experimentally on one FLM. The effect of the observer bandwidth on the system performance is simulated and studied to select the best values of the bandwidth frequency. The simulation and experimental results show that the proposed robust ADRC has better performance than the traditional ADRC.
In this paper, a composite controller is proposed for single-link flexible manipulators exposed to external tip force disturbances. In the proposed scheme, the extended Kalman filter is utilized to observe the environmental forces and the Lyapunov redesign robust controller is applied to control the destabilizing effect of the observation errors in noisy situations. The observed force can be utilized in different applications (such as tele-surgical robotics) in order to eliminate the necessity of additional force sensors. This fact is important for structural miniaturization and cost reduction. The main contributions of this paper are (1) proposing a disturbance observation technique for in-contact flexible link manipulators (note that the challenge of Jacobian singularity is studied as a possible diverging factor of the observation) and (2) proposing the composite robust controller to eliminate the destabilizing effect of estimation errors. The advantages of the proposed control scheme over the conventional techniques are analyzed. Simulation results are given for a single-link flexible manipulator to illustrate the effectiveness of the composite control technique and experimental results are given to validate the performance of the observation method.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.