We assume the validity of the equivariant Tamagawa number conjecture for a certain motive attached to an abelian extension K/k of number fields, and we calculate the Fitting ideal of the dual of clK− as a Galois module, under mild extra hypotheses on K/k. This builds on concepts and results of Tate, Burns, Ritter and Weiss. If k is the field of rational numbers, our results are unconditional.