We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Thinning a large concentric ring array by an evolutionary algorithm needs to handle a large amount of variables. The computational time to find out the optimum elements set increases with the increase of array size. Moreover, thinning significantly reduces the directivity of the array. In this paper, the authors propose a pattern synthesis method to reduce the peak sidelobe level (peak SLL) while keeping first null beamwidth (FNBW) of the array fixed by thinning the outermost rings of the array based on Gravitational Search Algorithm (GSA). Two different cases have been studied. In the first case only the outermost ring of the array is thinned and in the second case the two outermost rings are thinned. The FNBW of the optimized array is kept equal to or less than that of a fully populated, uniformly excited and 0.5 λ spaced concentric ring array of same number of elements and rings. The directivity of the optimized array for the above two cases are compared with an array optimized by thinning all the rings, while keeping the design criteria same as the above two cases. The optimized array by thinning the outermost rings gives higher directivity over the optimized array by thinning all the rings. Time required for computing the optimum elements state for the above two cases using GSA are shown lesser compared to the optimized array by thinning all the rings using the same algorithm. The peak SLL and the FNBW of the optimized array for the above two cases are also compared with the optimized array by thinning all the rings.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.