Fibonacci anyons are attractive for use in topological quantum computation because any unitary transformation of their state space can be approximated arbitrarily accurately by braiding. However, there is no known braid that entangles two qubits without leaving the space spanned by the two qubits. In other words, there is no known ‘leakage-free’ entangling gate made by braiding. In this paper, we provide a remedy to this problem by supplementing braiding with measurement operations in order to produce an exact controlled rotation gate on two qubits.