We present a method for kinematic calibration of open chain mechanisms based on the product of exponentials (POE) formula. The POE formula represents the forward kinematics of an open chain as a product of matrix exponentials, and is based on a modern geometric interpretation of classical screw theory. Unlike the kinematic representations based on the Denavit- Hartenberg (D-H) parameters, the kinematic parameters in the POE formula vary smoothly with changes in the joint axes, ad hoc methods designed to address the inherent singularities in the D-H parameters are therefore unnecessary. Another important advantage is that simple closed-form expressions can be obtained for the derivatives of the forward kinematic equations with respect to the kinematic parameters. After introducing the POE formula, we derive a least-squares kinematic calibration algorithm for general open chain mechanisms. Simulation results with a 6-axis open chain are presented.