We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To validate the ovine model of profound oropharyngeal dysphagia and compare swallowing outcomes of laryngotracheal separation with those of total laryngectomy.
Methods:
Under real-time fluoroscopy, swallowing trials were conducted using the head and neck of two Dorper cross ewes and one human cadaver, secured in lateral fluoroscopic orientation. Barium trials were administered at baseline, pre- and post-laryngohyoid suspension, following laryngotracheal separation, and following laryngectomy in the ovine model.
Results:
Mean pre-intervention Penetration Aspiration Scale and National Institutes of Health Swallow Safety Scale scores were 8 ± 0 and 6 ± 0 respectively in sheep and human cadavers, with 100 per cent intra- and inter-species reproducibility. These scores improved to 1 ± 0 and 2 ± 0 post-laryngohyoid suspension (p < 0.01). Aerodigestive tract residue was 18.6 ± 2.4 ml at baseline, 15.4 ± 3.8 ml after laryngotracheal separation and 3.0 ± 0.7 ml after total laryngectomy (p < 0.001).
Conclusion:
The ovine model displayed perfect intra- and inter- species reliability for the Penetration Aspiration Scale and Swallow Safety Scale. Less aerodigestive tract residue after narrow-field laryngectomy suggests that swallowing outcomes after total laryngectomy are superior to those after laryngotracheal separation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.