We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Euler–Mascheroni constant
$\gamma =0.5772\ldots \!$
is the
$K={\mathbb Q}$
example of an Euler–Kronecker constant
$\gamma _K$
of a number field
$K.$
In this note, we consider the size of the
$\gamma _q=\gamma _{K_q}$
for cyclotomic fields
$K_q:={\mathbb Q}(\zeta _q).$
Assuming the Elliott–Halberstam Conjecture (EH), we prove uniformly in Q that
In other words, under EH, the
$\gamma _q /\!\log q$
in these ranges converge to the one point distribution at
$1$
. This theorem refines and extends a previous result of Ford, Luca and Moree for prime
$q.$
The proof of this result is a straightforward modification of earlier work of Fouvry under the assumption of EH.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.