We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present study was designed to investigate the effect of chronic heat exposure (32° constant) on plasma metabolites and hormone concentrations in broiler chickens. At 2 and 4 weeks of age, fifty-four male Shaver broiler chickens were allocated to one of three treatments: 22° ad lib. feeding (22AL), 32°ad lib. feeding (32AL) and 22°,pair-feeding with the 32AL group (22PF). Ambient temperature was kept constant at either 22 or 32° for 2 weeks. Plasma glucose, triacylglycerols, phospholipids, non-esterified fatty acids (NEFA), individual amino acids, uric acid, insulin, triiodothyronine (T3), thyroxine, corticosterone were determined. Sensitivity to exogenous insulin was also measured at 7 weeks of age. At 4 and 6 weeks of age, i.e. after 2 weeks at high ambient temperature, fasted 32AL chickens displayed similar concentrations of glucose and triacylglycerols to those of 22AL birds. When fed, 32AL chickens exhibited higher plasma levels of glucose and decreased concentrations of NEFAand amino acids. Feed restriction resulted in intermediate values. Concentrations of all plasmafree amino acids were decreased under heat exposure except for aspartic acid, glutamic acid andphenylalanine. At 6 weeks of age, plasma T3 was reduced irrespective of the nutritional state, while plasma corticosterone concentrations were increased in 32AL birds compared with 22AL birds. Heat exposure did not change plasma insulin concentration in either fasted or fed chickens. The 32AL chickens displayed significantly reduced sensitivity to exogenous insulin when fasted,but an enhanced response to insulin when fed, compared with both 22° groups. Such endocrinological changes could stimulate lipid accumulation through increased de novo lipogenesis, reduced lipolysis and enhanced amino acid catabolism under chronic heat exposure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.